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Abstract 

Although it is well known that the rate of sintering is governed by deceleratory kinetics, it 

is often difficult to fit power-law and nth-order reaction models over broad time-

temperature ranges.  This work shows that a phenomenological model combining a 

reaction order with an activation energy distribution can correlate surface area as a 

function of sintering time and temperature over a greater range of those variables.  

Qualitatively, the activation energy distribution accounts the dependence of free energy 

on particle size and material defects, while the reaction order accounts for geometric 

factors such as a distribution of diffusion lengths.  The model is demonstrated for 

sintering of hydroxyapatite using data of Bailliez and Nzihou (Chem. Eng. J. 98 (2004), 

141-152).   
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1.  Introduction 

 

Sintering of powders is an industrial practice spanning many applications, and 

German1 gives an excellent introduction.  In very general terms, sintering is governed by 

two interrelated properties, a change in free energy, which provides the driving force for 

the process, and kinetics, which provides the mobility of the system to the lower free 

energy state.  Sintering can occur by many mechanisms, including viscous flow, plastic 

flow, evaporation-condensation, surface diffusion, volume diffusion, and grain-boundary 

diffusion. 

Predicting the kinetics of sintering has practical aspects for both process 

optimization and material lifetime prediction.  Process optimization is usually easier, 

because it is usually an interpolation problem for which the calibration data might cover a 

relatively narrow range of conditions.  Lifetime prediction is more challenging, since it 

involves extrapolation of artificial aging experiments outside the range of calibration.  

Consequently, a relatively small deviation in a model at the extremes of the calibration 

data can result in a relatively large error in lifetime prediction if the functional form is not 

correct. 

A vast literature exists on the kinetics of sintering, and various equations have 

been derived that use powers of time and particle size along with an Arrhenius 

temperature dependence.1  However, these models often have difficulty correlating 

sintering data over wide ranges of time and temperature.  For example, the common nth-

order sintering model often requires n to be a function of temperature, with the qualitative 



justification that the mechanism is changing as a function of temperature (e.g., Bailliez 

and Nzihou2). 

Changes in free energy driving the sintering process are ordinarily attributed to 

changes in the radius of curvature.  Less widely recognized is that sintering often starts 

with very imperfect crystals that have free energies substantially different from the 

perfect material.  For example, Rogers and Dinegar3 report that heats of fusion of 

pentaerythritol tetranitrate (PETN) crystals can have heats of fusion up to 20% less than 

the single crystal value, and the variation of the heat with crystallization conditions is far 

greater than with changes in surface area caused by grinding.  A free energy distribution 

in the starting material will result in an activation energy distribution in the kinetics. 

Both nth-order and activation energy distribution kinetic models have been used 

extensively for modeling fossil fuel conversion.4, , ,5 6 7 The earliest and simplest energy 

distribution model used a Gaussian distribution characterized by a mean, E0, and standard 

deviation, σ.7 For systems with modest distributions of reactivity, nth-order (n ≤ 2.5) or 

Gaussian (σ ≤ 3.5% of E0) models work equally well, even with considerable 

extrapolation in temperature.8  However, sintering is often, if not usually, characterized 

by reaction orders that are considerably larger, and possibly by free energy distributions 

as well, if the Rogers-Dinegar result3 for PETN is typical.  

 The hypothesis tested in this paper is that the temperature dependence of the 

reaction order can be removed if the kinetic model also includes an activation energy 

distribution.  We use the data of Bailliez and Nzihou,2 since it covers such a broad range 

of temperature and degree of sintering.  We find that the nth-order/Gaussian distribution 



model works very well, resulting in a reduction in nonlinear-regression residuals 

compared to the nth-order model typically used for sintering.   

 

2.  Sintering Models 

 

 Deceleratory sintering reactions are often characterized by a power law in time9,10  

 

  α ∝ (1+at)-ν         (1) 

 

where α is the extent of reaction (e.g., ratio of the change in surface area to the ultimate 

change in surface area, or 1-S/S0) and a and ν are constants, and t is time; or an nth-order 

reaction,2, ,11 12  

 

 -dα/dt ∝ (1-α)n        (2)

 

Coming from different fields, Raynaud et al.13 and Tarutis14 independently note that the 

two approaches are actually equivalent, with the exponent of the power law in time being 

related to the order of the nth-order reaction by n = 1+1/ν.  Reaction order is commonly 

interpreted in geometric terms, e.g., shrinking-core reactions are described by n < 1.15  

Tarutis, drawing upon earlier work by Boudreau and Ruddick,16 notes that an nth-order 

reaction is mathematically equivalent to for n > 1 to a Gamma (near-exponential) 

distribution of reactivity.  Consequently, one can consider reaction order as a measure of 

a distribution of diffusion lengths, for example.  Regardless of the precise physical 



interpretation, n should be constant if the geometric progression of the reaction is 

independent of temperature, and all temperature dependence would be ascribed to a 

single activation energy, if one uses the standard Arrhenius rate law. 

 Alternatively, one can use a Gaussian distribution of activation energies to 

describe the distribution of reactivity.  In this case,17  

 

 dα/dt = ∫
0

∞
 k(E) exp[-∫

0

t
 k(E)dt]D(E) dE  (1st-order)  (3)  

 

and 

    

dα/dt = ∫
0

∞
 k(E) [1-(1-n)∫

0

 t
 k(E)dt]D(E) dE  (nth-order)  (4) 

 

where k = A exp(-E/RT), E is the activation energy, A is the frequency factor, R is the gas 

constant, and  

 

 D(E) = (2π)-1/2σ-1exp[-(E-E0)2/2σ2]      (5) 

 

where E0 is the mean energy and σ is the standard deviation.  In practice, equation is 

implemented in the LLNL kinetics analysis program (Kinetics98,4 Kinetics2000,18 and 

Kinetics0519) by discretizing the distribution into parallel independent 1st- or nth-order 

reactions having a maximum spacing of 2.1 kJ/mol to cover the required energy interval 

and then weighting these reactions according to the Gaussian distribution.  Each reaction 



is numerically integrated using the rational approximation to the exponential integral 

given by Braun and Burnham.17   

 Both the simple nth-order and 1st-order Gaussian distribution approaches yield 

deceleratory curves at constant temperature, with the ultimate extent of reaction 

appearing to depend on temperature when n and σ are large.  Calculations for 

intermediate values of both n and σ  are given in Figure 1.  In order to have the overall 

degree of sintering cover the same range, a higher mean energy is needed for the 

Gaussian model so that the lowest energy channel of the distribution is close to the single 

value of the nth-order reaction.  The shape of the deceleration and how it varies with 

temperature is different for the two models.  

 

Sintering of hydroxyapatite 

 

Bailliez and Nzihou2 provide an interesting data set for testing the ability of a 

combined nth-order activation energy distribution model to correlate the extent of 

sintering over a very wide range.  They present data for two hydroxyapatites:  HAPTCP 

was formed by reacting CaCl2, H3PO4, and NaOH; and HAPCaO was formed by reacting 

Ca(NO3)2  with (NH4)2HPO4 and ammonia.  The initial surface areas were 28 and 104 

m2/g, respectively. 

Data was digitized from the published plots of surface area versus time at various 

temperatures.  It was then fitted by nonlinear regression to nth-order, Gaussian, and 

combined models using the LLNL analysis program Kinetics05.  The parameters ln(A), 

E/10000R, n, and σ are optimized to a relative tolerance of 0.001.  Results of this analysis 



are given in Table 1, including a measure of the uncertainties in E, n, and σ.  A graphical 

comparison of data with calculation is given in Figure 2 for the combined model. 

When only one of the two parameters (n or σ) is used, a better fit is obtained with 

the nth-order model for HAPTCP and with the Gaussian model for HAPCaO.  However, the 

best fit is obtained for both materials using both model parameters, and it is especially 

better for HAPTCP.  The mean activation energy for the Gaussian model is higher than for 

the nth-order model as explained in the previous section.  In work to be reported 

elsewhere, the energy distribution parameter (σ ) is much more important than reaction 

order (n) for correlating sintering data of the energetic material PETN— negligible 

improvement in the RSS is obtained by optimizing n in addition to σ, and the optimized 

value of n is close to unity.  This result suggests that using both n and σ for HAP is 

indeed meaningful. 

Two related issues are the uncertainties in the parameters and when one should 

use four rather than three parameters to describe the data.  Unlike for linear regression, 

such questions cannot be answered by definitive mathematical formulas.  Although 

linearization methods are commonly used to estimate parameter uncertainties in nonlinear 

regression, they may be grossly in error unless the model is close to linear.20  

Consequently, the uncertainties reported in Table 1 are those that change the RSS by 10% 

for the parameter of interest while re-optimizing the other parameters.  This difference is 

large compared to the convergence criteria but comparable to the improvement by using 

both n and σ instead of the best one of the two.  The relative changes in ln(A) would be 

similar to those in E/R, since those variables are highly correlated per the well known 

compensation law.  Of most significance is that the uncertainties in n and σ when both 



are used are small compared to their values, which supports the conclusion of the 

previous paragraph. 

The activation energies reported here are about one-third lower than those 

reported by Bailliez and Nzihou2.  The reason for this discrepancy is not certain, but it 

may relate to the common problem of deriving activation energies under circumstances 

where the extent of conversion is not maintained constant.  In this case, the activation 

energy can shift from its true value to make up for other model deficiencies.21  This is not 

possible by our method, since the entire data set is fitted simultaneously to the model.  

Even so, the activation energies are not exceptionally well constrained by the data even in 

our case, as indicated by the uncertainties given in Table 1.   

 

Conclusions 

 

The combination of an nth-order reaction model with a Gaussian activation 

energy distribution provides a simple yet powerful method for correlating sintering data 

over a very wide time-temperature range.  The nth-order aspect can be interpreted in 

terms of standard neck-growth phenomena and a distribution of diffusion lengths.  The 

activation energy distribution reflects the distribution of free energies for imperfect 

starting crystals.  While the combined model fits the data better than either aspect 

independently for both hydroxyapatite samples examined, the activation energy 

distribution aspect is considerably more important for the higher surface area material.  

The activation energies derived by nonlinear regression to the entire range of conversion 



simultaneously are more reliable than other forms of model fitting that sample different 

aspects of the reaction at different temperatures. 
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Table 1.  Hydroxyapatite kinetic parameters derived by nonlinear regression for the 

Gaussian and nth-order reaction models from the data of Bailliez and Nzihou2.   

 

 A, s-1 E0/R, K n σ, % of E0 RSSa

HAPTCP      

nth-order 8.43×1011 30313 6.89 0.0 0.1001 

   1.1 RSSb ⎯ ±7684 ±1.56 ⎯   ⎯ 

Gaussian 1.63×1011 32506 1.00 17.17 0.3090 

   1.1 RSS ⎯ ±16311 ⎯ ±2.85 ⎯ 

Both 1.64×1013 33001 7.01 6.93 0.0762 

   1.1 RSS ⎯ ±7160 ±0.32 ±1.47 ⎯ 

HAPCaO     

nth-order 1.79×109 24246 4.01 0.0 0.1530 

   1.1 RSS ⎯ ±3585 ±0.73 ⎯ ⎯ 

Gaussian 9.44×109 27383 1.00 11.4 0.1189 

   1.1 RSS ⎯ ±4826 ⎯ ±1.16 ⎯ 

Both 2.92×1010 27149 3.22 8.32 0.1046 

   1.1 RSS ⎯ ±4431 ±0.89 ±1.40 ⎯ 

aresidual sum of squares from nonlinear regression. 

bchange in parameter to increase RSS by 10% while re-optimizing other variables.



0

20

40

60

80

100

0 50 100 150 200
Time, hours

S
ur

fa
ce

 a
re

a,
 m

2/
g

300
350
400
450
500

nth-order

0

20

40

60

80

100

0 50 100 150 200
Time, hours

S
ur

fa
ce

 A
re

a,
 c

m
2 /g 300

350
400
450
500

Gaussian

0

20

40

60

80

100

0 50 100 150 200
Time, hours

S
ur

fa
ce

 a
re

a,
 m

2/
g

300
350
400
450
500

nth-order

0

20

40

60

80

100

0 50 100 150 200
Time, hours

S
ur

fa
ce

 A
re

a,
 c

m
2 /g 300

350
400
450
500

Gaussian

 

 

Fig. 1.  Idealized sintering curves calculated from nth-order (top) and Gaussian activation 

energy distribution (bottom) models.  In both cases, A= 3×1015 s-1.  For the nth-order 

model, n = 5 and E/R = 30,000 K.  For the Gaussian model, σ = 10% of E0 and E0 = 

33,000 K.  The higher mean energy is needed for the Gaussian model so that the lowest 

energy channel of the distribution is close to 30,000 K. 
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Figure 2.  Comparison of measured and calculated fractions sintered (1-S/S0) for the nth-

order Gaussian energy distribution model.  The four model parameters are fitted 

simultaneously by nonlinear regression and are given in Table 1.
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